欢迎来到莱特莱德•环境

新浪微博 微信关注 法律声明 网站地图

全国解决方案定制热线
双阀双罐全自动软化水设备
热门关键词: 全自动软化水设备| 锅炉软化水设备| 成套软化水设备| 离子交换器| 富莱克软化水设备| 阿图祖软化水设备| 除铁锰软化水设备| 软水机| 软化水控制阀| 软化水耗材|
当前位置:首页 > 行业市场 > 技术前沿 > RO反渗透设备设计依据

RO反渗透设备设计依据

时间:2010-07-15 14:04:43  来源:软化水设备网  作者:锅炉水处理设备

反滲透纳滤基础知识
膜分离:
物质世界是由原子、分子和细胞等微观单元构成的,然而这些很小的物质单元总是杂居共生,热力学第二定律揭示了微观粒子都会倾向于无序的混合状态。膜分理技术得基础是分离膜。分离莫是具有选择性透过性的薄膜,某些分子(或微粒)可以透过薄膜,而其他的则被阻隔。这种分离总是依赖于不同的分子(或微粒)之间的某种区别,最简单的区别就是尺寸大小,三维空间之中,什么都有大上巨细而膜有孔径。
全量过滤:
     全量过滤也称为直流过滤、死端过滤、与常规的滤布过滤相似,被处理物料进入模组件,等量透过液流出模组件,截流物留在模组件内。为了保证膜性能的可恢复性,必须及时从模组件内卸载截留物,因此需要定时反冲洗(过滤的反过程)等措施来去除膜面沉积物、恢复膜通量。模组件污染后不能拆开清洗,通常使用在线清洗方式(CIP)超滤/微滤水处理过程一般采用全量过滤模式。
错流过滤     
    被处理料液以议定的速度流过膜面,透过液以垂直方向透过膜,同时大部分截留物被浓缩液夹带出模组件。错流过滤模式减小了膜面浓度极化层的厚度,可以有效降低膜污染,反滲透、纳滤均采用错流过滤方式。
膜系统 : 
膜系统是指膜分离装置单元。压力驱动膜系统主要由预处理系统、升压泵、模组件(压力容器和膜元件)、管道阀门和控制系统构成。
膜污染:
    各种原水中均含有一定浓度的悬浮物和溶解性物质。悬浮物主要由无机颗粒物、胶体和微生物、藻类等生物性颗粒。溶解性物质主要是易溶盐(如氯化物)和难溶盐(如碳酸盐、硫酸盐和硅酸盐)。再反渗透过程中,进水的体积在减少,悬浮物和溶解性物质的浓度在增加。悬浮颗粒会沉积在膜上,堵塞进水流道、增加摩擦阻力(压力降)。难溶盐会从浓水中沉淀出来,在磨面上形成结垢,降低RO膜的通量。这种在膜面上形成沉积层的现象叫膜污染,膜污染是膜系统性能的劣化。
反滲透/纳滤基本原理:
 半透膜:
     是具有选择性透过性能的薄膜。当液体或气体透过半透膜时,一些组分透过,而另外一些组分被截留。实际上半透膜对任何组分都有透过性,只是透过的速率相差很大。在反渗透过程中,溶剂(水)的透过速率远远大于溶解在水中的溶质(盐分)。通过半透膜实现了溶剂和溶质的分离,得到纯水以及浓缩的盐溶液。
 渗透:
     是当流体在跨越半透膜屏障时的一种自然过程。如果将一箱纯水用一张半透膜垂直分为两部分,纯水于理想的半透膜的两面以相同的温度和压力接触,在这样的条件下没有跨越半透膜的水的流动产生,因为在膜两侧的化学势完全相等。如果在其中一侧加入溶解性盐,盐溶液一边的化学势降低了。纯水便会向盐溶液一侧渗透,从而产生一个渗透流,直到化学势的平衡重新建立为止。
 渗透压:
 按照科学术语在半透膜的两侧存在一个‘化学势’(离子或溶解分子的浓度差)的差值,通过溶液的渗透过程对化学势差进行补偿。当平衡重新建立时,在半透膜的两侧形成一个水位差即静压差,这个压力差便是渗透压。渗透压是溶液本生的性质,取决于溶液浓度,于半透膜没有关系。
渗透压与溶质浓度之间的关系为:
Posm = 1.19 (T + 273) * Σ(mi) (1)
其中Posm=渗透压(psi),T为温度(℃), Σ(mi)是溶液中所有溶质的总摩尔浓度。TDS为1000ppm的水溶液的近似渗透压约为11 psi (0.76 bar)。
反渗透
在图-6a的箱子中,水通过渗透作用流向盐溶液一侧,直到达到新的平衡建立。在盐溶液一边施加一个额外的压力与渗透压相等,原有的平衡会受到影响(图-6b)。外加压力将会使盐溶液一边的化学势增加,使溶剂流向纯水一边。这种现象便是反渗透。反渗透过程的驱动力是外加压力,反渗透分离所需能量与溶液的难度直接相关。因此,从盐溶液中生产同样体积的水,盐的浓度越高,所需能耗也越高。
图-6 反渗透原理
对于反渗透过程分离水和盐的机理还没有一个公认的统一解释。目前一般推荐两种传递模型:毛细孔流模型和溶解扩散模型。水通过膜有两种方式,一种是通过膜上存在的孔,另外一种是通过膜中的分子节点之间的扩散。根据理论,膜的化学性质是,在固液界面上水优先吸附并通过,盐被截留。水与膜表面之间有弱的化学结合力,使得水能够在膜的结构中分散。膜的物理和化学性质决定了在传递过程中水比盐的优先地位。
水的传递
水通过半透膜的速率由方程(2)确定。
Qw = ( ΔP - ΔPosm) × Kw × S/d (2)
其中
Qw为苏水透过膜的速率,ΔP为膜两侧压力差,ΔPosm为膜两侧的渗透压差,Kw为膜的纯水渗透系数,S为膜面积。(2)式通常被简化为:
Qw = A × (NDP) (3)
其中
A为膜常数,NDP为跨过膜的水传质净驱动压力或净驱动力。
盐的传递
透过膜的盐流量定义为:
Qs = ΔC × Ks × S/d (4)
其中Qs为膜的透盐量,Ks为膜的盐渗透系数,ΔC为膜两侧盐浓度差,S为膜面积,d为膜厚度。该方程可简化为:
Qs = B×(ΔC) (5)
其中B代表膜常数,ΔC为盐传质驱动力。
从方程(4)和(5)可以看出。对于一个已知的膜来说:
● 膜的水通量与总驱动压力差成比例;
● 膜的透盐量与膜两侧的浓度差成比例,与操作压力无关。
透过液的盐浓度Cp,取决于透过反渗透膜的盐量和水量的比:
Cp = Qs/Qw (6)
膜对水和盐的传质系数不同,所以才有脱盐率。没有什么理想的膜具有对盐完全的脱除性能,实际上是传质速率的差别早就了脱盐率。方程(2)、(4)和(5)给出了设计反渗透系统必须考虑的一些主要因素。比如操作压力的增加会提高水通量,但对盐的透过没有影响,所以透过液的盐度会更低。
透盐率
原水中溶解性杂质透过膜的百分率,计算公式为:
SP = 100% × (Cp/Cfm) (7)
其中SP为透盐率(%),Cp为透过液盐浓度,Cfm为料液的平均盐浓度。
水通量和透盐率的基本关系式是反渗透的基本原理。可以看出,透盐率随操作压力增加而降低,其原因是水通量随压力增加,但盐的透过速率在压力变化情况下保持不变。
脱盐率
通过反渗透膜从原水中脱除总可溶性杂质浓度或特定溶质浓度的百分率。计算公式为:
SR = 100% - SP (8)
其中SR为脱盐率(%),SP为透盐率(见7式)。
产水-透过液
反渗透、纳滤膜的透过液为净化水,因此也称为系统产水。
浓水-浓缩液
未透过膜的溶液,原水中的溶质在其中被浓缩。在水处理反渗透系统中浓水作为废水排出。
回收率(转化率)
料液转化为透过液的百分率。回收率是反渗透系统设计和运行的重要参数,计算公式为:
R = 100%×(Qp/Qf) (9)
其中R为回收率(%),Qp为产水流量,Qf为原水流量。回收率影响透盐量和产水量。回收率增加时料液侧中的盐浓度也会增加,致使透盐量增加、渗透压上升以及NDP降低,产水量降低。
浓差极化比(b系数)
膜透过水并截留盐时,在膜表面附近会形成一个边界层,边界层中的盐浓度比本体溶液浓度高,这种盐浓度在膜面附近的增加叫做浓差极化。浓差极化会使实际的产水通量和脱盐率低于理论估算值。浓差极化效应如下:
◆ 膜面上的渗透压比本体溶液中高,从而降低NDP(净驱动压力);
◆ 降低水通量(Qw);
◆ 增加透盐量(Qs);
◆ 增加难溶盐在膜面上超过其溶度积形成沉淀结垢的可能性。
浓差极化因子(CPF)被定义为膜面浓度(Cs)与本体浓度(Cb)的比:
CPF = Cs/Cb (10)
水通量的增加会增加离子向膜面的输送量,从而增加Cs。料液流速的增加加剧了紊流效果,减少了膜面高浓度层的厚度。因此CPF与透过通量(Qp)成正比,与平均料液流量(Qfavg)成反比:
CPF = Kp×exp(Qp/ Qfavg) (11)
其中Kp是取决于系统结构的比例常数。料液平均流量采用料液和浓缩液的算术平均数,CPF可以表达为膜元件透过液回收率(r)的函数:
CPF = Kp×exp[2R/(2-R)] (12)
海德能推荐的浓差极化因子极限值为1.20,对于40英寸长的膜元件来说,相当于18%的回收率。
纳滤膜及其主要应用
理想的反渗透膜只对水有透过性能,任何溶质都会被阻留。纳滤膜早期称为松散反渗透(Loose RO)膜,纳滤膜可以让部分溶质透过,根据膜和溶质的种类不同,溶质的透过率也不同。
纳滤膜的一个很大特征是膜本体带有电荷性。这是它在很低压力下仍具有较高脱盐性能和截留分子量为数百的膜也可脱除无机盐的重要原因。纳滤主要应用于以下几个介面:
(1) 软化水处理
对苦咸水进行软化、脱盐是纳滤膜应用的最大市场。
(2) 饮用水中有害物质的脱除。
传统的饮用水处理主要通过絮凝、沉降、砂滤和加氯消毒来去除水中的悬浊物和细菌,而对各种溶解性化学物质的脱除作用很低。纳滤膜可用于脱除河水及地下水中含有的三卤甲烷中间体THM(加氯消毒时的副产物为致癌物质)、低分子有机物、农药、异味物质、硝酸盐、硫酸盐、氟、硼、砷等有害物质。
(3) 中水、废水处理。
(4) 食品、饮料、制药行业。
各种蛋白质、氨基酸、维生素、奶类、酒类、酱油、调味品等的浓缩、精制。
(5) 化工工艺过程水溶液的浓缩、分离。
3 膜性能的影响因素
反渗透以及纳滤过程的主要指标是产水通量和脱盐率。对于一定的膜元件,产水量和脱盐率受到给水水质条件和系统运行参数的影响,最基本的给水水质因素有含盐量(浓度)、温度和pH值等,运行参数有压力、给水流量和回收率等。下面就关于对产水量和脱盐率产生影响的各操作因子做一般论述。
给水浓度
浓度对产水量和截留率的影响如图-7所示。一定压力下当供给的原水浓度增高时,产水量就会减少。这是因为供给水的渗透压变高,有效压力降低的缘故。脱盐率受浓度影响非常大。通常浓度提高,产水量就会降低的同时,脱盐率也会降低。但是当非常低的浓度下,起初浓度增加,脱盐率率也会稍许增加。随后,随着浓度的不断增加脱盐率就变的低下。
图-7 原水浓度对透水量及脱盐率的影响
膜元件CPA3-8040 原水浓度氯化钠1500mg/L 操作压力1.55MPa 温度25℃
温度的影响
温度对脱盐率和产水量的影响如图-8所示。温度变高,水的粘度降低,水的扩散性增加,产水量也随着温度上升而增加。在同一压力下,温度上升一摄氏度,产水量可增大3~4%。另一方面对于不同类型的膜,温度对于脱盐率率的影响的差别较大。一般来讲温度增高脱盐率降低。这是因为温度上升,盐的扩散速度就会增大的原因。
pH依存性
进水pH值对膜分离性能有较大影响,但对于不同的膜材质和原水水质有一定差别。采用氯化钠测试溶液, CPA3膜的pH依存性如图-9所示。聚酰胺系列的反渗透膜是拥有氨基(-NH2)和羧基(-COOH)的两性电荷膜。在低pH值时,膜面电位比等电点(膜电位
图-8 给水温度对透水量及脱盐率的影响
膜元件CPA3-8040 操作压力1.55MPa 回收率15%
图-9 pH对透水量及脱盐率的影响
CPA3-8040 原水浓度1500mg/L 操作压力1.55MPa 回收率15% 温度25℃
 
 
 
图-10 操作压力对透水量及脱盐率的影响
膜元件CPA3-8040 原水浓度氯化钠1500ppm 回收率15%
 
图-11 浓水流量对透水量及脱盐率的影响
CPA3-8040 原水浓度1500mg/L 操作压力1.55MPa 温度25℃
=0)要高,氨基吸收质子(-NH2+ H+ = -NH3+),膜表面现正电性;在高pH值时,膜面电位比等电点要低,羧基失去质子(COOH = COO- + H+)表现为阴性。因为通常聚酰胺系列反渗透膜的等电点在酸性范围,因此在中性(pH=7)附近,聚酰胺膜表现负电荷性。原水的浓度稀薄的时候,表现负电荷性的膜相对于(Cl-)阴离子比较,阳离子(Na+)的脱除率就相对降低。在高浓度,两种离子的脱除率基本相近。对于天然水RO/NF系统,pH降低会使产水电导率升高。这是由于天然水一般都含有碳酸氢根(HCO3-),而碳酸氢根与氢离子、二氧化碳和碳酸根的平衡关系受到pH值的影响。在pH降低时二氧化碳含量增加,膜对二氧化碳没有分离效果(进、产水中二氧化碳浓度相等),透过膜的二氧化碳会建立新的平衡,增加产水电导率。
操作压力
产水量的增加与压力成正比。由于盐透过速率受压力影响较小,随着产水量增加脱盐率会随着操作压力的增加而上升,大致为一定值。操作压力对于脱盐率和产水量的影响如图-10所示。
流量的影响
浓水流量对产水量和脱盐率的影响如图-11所示。在压力一定的条件下,进水流量降低时脱盐率和产水量都会下降。这里有两方面的原因。一方面压力不变而进水流量降低会增加系统的浓缩倍率,提高了下游的给水浓度,渗透压会相应提高,从而降低了净推动压力。同时由于降低了产水量,盐浓度增加导致盐透过增加,降低了脱盐率。另一方面,降低进水流量等于膜表面线速度的降低,增加了膜表面边界层厚度和边界层浓度,同样提高了渗透压和透盐速率。
回收率
回收率对产水量和脱盐率的影响见图-12所示。在压力一定情况下,回收率提高,膜面的浓差极化比也提高,有效压力则减小,最终产水量减小。同时脱盐率也降低。和上面提到的流量的影响相同。膜系统回收率的限制来自于两个方面,一个是存在渗透压的影响,另外一个同原水水质也密切相关。回收率增高时,溶解于溶液中的盐呈过饱和状态,会有盐及其它溶质析出在膜面沉淀、结垢的可能,会对膜性能带来很大的危害。
 
 
图-12 回收率对透水量及脱盐率的影响
CPA3-8040 原水浓度氯化钠1500mg/L 操作压力1.55MPa 温度25℃
 温度
温度是一个十分关键的设计参数。给水泵压力、各段产水量平衡、淡水水质及难溶盐的溶解度等各个设计参数均与温度密切相关。作为一种粗略算法:给水温度每降低10华氏度,给水泵压力则需增加15%。各段产水量也受到温度的影响。水温增加时,位于RO系统前端的膜元件产水量增加,而后端的膜元件产水量下降。而水温较低时,各段产水量较为均衡。水温较高时,离子透过膜体的动能增加,因而系统透盐率增加。水温增高时,碳酸钙的溶解度下降。水温降低时,硫酸钙、硫酸钡、硫酸锶及二氧化硅的溶解度下降。
pH值
给水的pH值定义了它的酸碱性。pH值为7时是中性;为0-7时呈酸性;为7-14时呈碱性。在分析化学中,pH值是氢离子浓度负对数。在水化学中,pH值用于定义二氧化碳、碳酸氢根、碳酸根、氢氧根离子的碱度平衡是十分重要的。浓水的pH值一般较给水pH值偏高,这是由于碳酸氢根、碳酸根离子浓度高于二氧化碳浓度。【Rodesign】软件允许用户用盐酸与硫酸调整给水的pH值,用酸降低给水pH值将LSI(朗格里尔)指数下降,且降低碳酸钙沉淀的可能。给水与浓水的pH值也影响着硅、铝、有机物与油脂的溶解度与污染程度。给水pH值的变化还影响了离子的脱除率,pH值下降时氟、硼与硅的脱除率随之下降。
电导率
电导率是表示水中溶解离子导电能力的指标。没有离子的理想纯水,不会产生电流。电导率用电导率仪测量,其单位为微西门子/厘米(μs/cm)。电导率也是测量水中离子浓度的简便方法,但不能精确反映离子种类。离子构成不同,电导值也不同;但电导的数值随离子浓度增加而增加。TDS(溶解固体总量)仪是利用变换因子将电导率值转换为TDS值。在水质分析中,可用不同离子对应的不同转换系数或溶解固体总量(TDS)对应的单一转换系数,估算电导率的数值。可用二氧化碳的ppm浓度的平方根乘以0.6求得其电导率;硅离子对电导率变化不产生影响。RO高纯水最精确的电导率数值是在线测量的。否则,高纯水暴露于空气之中,将改变其二氧化碳含量。
TDS(溶解固体总量)
在水处理工艺中,TDS是滤除悬浮物与胶体并蒸发掉全部水分后的剩余无机物。TDS以ppm或mg/l为单位,在【IMSdesign】软件中TDS是全部正负离子与二氧化硅的合计。【IMSdesign】软件中给水与淡水的TDS可以通过各自电导率折算出来。也可以在现场用TDS仪测量TDS,TDS仪测量水的电导率并乘以转换因子即得出已知参考溶液(如氯化钠、氯化钾)的TDS值。值得注意的是:通过电导率数值间接测出的各类离子混合而成水溶液的TDS值,与通过总加各类离子浓度得出的TDS值并不相同。一个粗略算法是:对于氯化钠参考溶液,每1 ppm的TDS值对应2ms/cm的电导率。
碱度
碱度主要是指二氧化碳、碳酸氢盐、碳酸盐与氢氧化物。在自然界中土地是碱性体,在中和酸雨过程中其pH值变化不大。二氧化碳与碳酸氢盐溶液的pH值为4.4至8.2;pH值为4.4或更低时,碱度以二氧化碳形式存在;pH值8.2时,不存在二氧化碳,全部碱度均为碳酸氢盐。在pH值为8.2至9.6时碳酸氢盐与碳酸盐溶液相互平衡。pH值为9.6时,不存在二氧化碳与碳酸氢盐,全部碱度为碳酸盐。当pH值在9.6以上时,由于氢氧根离子的存在,出现了氢氧基碱度。大部分自然界中水源的pH值为6.0至8.4,所以氢氧化物的出现是人为的。碱度(特别对于锅炉水化学)可表示为M碱度与P碱度。M碱度是指以碳酸钙计的ppm值表示的水的总碱度(用甲基橙作指示剂,酸滴定终点为pH=4.2)。P碱度测量碳酸氢盐、碳酸盐及氢氧化物的量(用酚酞作指示剂,酸滴定终点为pH=8.2)。
浊度
浊度是对水中不易沉淀的微小胶体悬浮物的检测指标。用浊度仪测量浊度就是测量溶液的相对透光度,并以NTU为单位。RO膜元件运行限值中经常规定:给水的最大浊度为1.0 NTU。
色度
色度是非精确测试参数,依据不同有机物引起色度的大小,可以用色度表示水中有机化合物含量的大小,并使用以白金为标准的APHA单位。
SDI(污染指数)
SDI是针对膜系统而检测给水中悬浮物与胶体粒子淤塞0.45微米孔径滤纸的速度的试验数据。该试验的主要数据是保持30 PSI给水压力状态下在5、10、15分钟内过滤的水量。典型RO元件的使用条件规定了给水的15分钟的最高SDI值为4.0。如果因为淤塞而使SDI试验只进行了5或10分钟,说明给水对RO系统的污染将是十分严重的。略加处理或全无预处理情况下,深井水的SDI值等于或低于3,浊度小于1。对地表水而言,欲达到SDI与浊度的要求,必须采用预处理工艺以去除悬浮物与胶体颗粒。
COD(化学耗氧量)
COD是以氧的ppm值为单位的非精确测试参数,用以测定生物可降解与生物不可降解有机物的含量,即计量重铬酸钾溶液氧化有机物的能力。
BOD (生物耗氧量)
BOD是以氧的ppm值为单位的非精确测试参数,用以测定生物可降解有机物的含量。BOD测量的是20℃下5天培养期内分解全部有机物质时所消耗的氧量。
TOC(总有机碳)
TOC是总有机碳(Total Organic Carbon)或总可氧化碳(Total Oxidizable Carbon)的英文缩写,是一个非精确测试参数。它以碳的ppm值为单位检测与有机物结合的碳的总量。由于TOC仅反映有机物中碳的数量,地表水中有机物的实际重量是该值的3倍。有机物是不包括二氧化碳、碳酸氢盐与碳酸盐在内的含碳的化合物。在水处理范畴内有机物可分为人造的与自然存在的两类。自然存在的典型有机物包括带负电荷的胶体、悬浮物、鞣酸、木质素、腐烂植物生成的水溶性腐殖酸混合物、腐烂植物生成的棕黄酸等。自然存在的有机物可以污染RO膜,特别是对带负电荷的聚酰胺复合膜。电中性的RO膜即电中性聚酰胺复合膜与醋酸纤维膜具有较强的抗有机物污染能力。RO系统可以有效的去除有机物,分子量大于200的有机物可去除99%以上,小于200的依分子量、形状、带电的不同,其去除率也不同。自然水源在RO系统中产生有机物污染的警戒水平:TOC为3 ppm、BOD为5 ppm、COD为8 ppm。
阳离子与阴离子
阳离子是正价离子,可吸收电子;阴离子是负价离子,有剩余电子;正负离子可以相互作用。他们对电子的共享形成电中性。例如,钙是二价阳离子可以结合两个单价氯离子形成电中性的氯化钙。不论计量单位是ppm、碳酸钙或meg/l,水中的正负离子浓度均相等。极性弱的阴离子硅虽计入TDS,但不参与阴阳离子平衡。
离子强度
给水中TDS增加时难溶盐的溶解度随之增加。为在计算硫酸钙、硫酸钡、硫酸锶或SDSI的溶解度时计及上述现象的影响,需要计算水中的离子强度:单价离子的强度是其以碳酸钙计ppm浓度乘以1×10-5,二价离子的强度是其以碳酸钙计ppm浓度乘以2×10-5,依此计算各价离子的强度。总加各类离子的强度即为水的总离子强度。
钠离子(Na)
钠是单价阳离子,钠盐的溶解度很高,不会在RO系统中造成结垢。海水中钠是主要的阳离子。作为阳离子的钠,在RO给水分析中自动与其它阴离子相平衡。饮食中钠的摄取浓度范围是从低钠的2000 mg/L到平均的3500 mg/L。美国EPA已设立了饮用水水质标准(DWEL),规定饮用水中钠为20mg/L。每天饮用2升100 mg/L钠含量的饮用水只有200 mg钠。每加仑10打兰(171.2 mg/l)硬度的相对硬水经软化后只含钠79 mg/L。
钾离子(K)
钾是单价正离子,在水中钾的含量较钠低得多,且有很高的溶解度,不会造成RO结垢。
镁离子(Mg)
镁是二价阳离子。镁在苦咸水硬度中约占三分之一,但在海水中可比钙的含量高出五倍。镁盐的溶解度较高,在RO系统中通常不会造成结垢问题。
钙离子(Ca)
钙是二价阳离子,钙于镁同为苦咸水中硬度的组成部分。在使用阻垢剂时,硫酸钙(CaSO4)(石膏)的溶解度可达230%。碳酸钙的溶解度LSI(朗格里尔指数)值可达+1.8-+2.5。
锶离子(Sr)
锶是二价阳离子。硫酸锶的溶解度很低,可能在RO系统的后端造成沉淀。当硫酸根浓度增加或温度降低时,硫酸锶的溶解度将降低。通常,铅矿附近的井水中含有小于15 ppm浓度的锶。硫酸锶的饱和浓度为100%,而使用阻垢剂时,饱和浓度可达800%。
钡离子(Ba)
钡是二价阳离子。硫酸钡(BaSO4)的溶解度很低,能够在RO系统的浓水出口侧造成沉淀。温度降低与硫酸盐浓度增高均使硫酸钡的溶解度进一步下降。钡一般出现在井水中,浓度一般小于0.05-0.2 ppm。钡的检测必须在精度为0.01 ppm(10 ppb)水平的仪器上进行。饱和度为100%,使用阻垢剂时可达6000%。
锰离子(Mn)
锰是井水与地表水中的污染物,其含量可达3 ppm。如铁一样,地表水的有机物中存在锰。在无氧气的水中锰呈溶解状态,氧化后呈不溶的黑色二氧化锰沉淀。暴露于空气中的反渗透给水中锰的警戒水平是0.05 ppm。由于会产生黑锈,在饮用水标准中规定了锰含量限值为0.05 ppm。用于控制铁污染的分散剂也可以用于控制锰污染。
铁离子(Fe)
铁是以两种形式存在的污染物。溶于水的形式为二价铁。不暴露于空气的井水中,二价铁类似于钙、镁,可通过软水器去除,或在RO原水中加入分散剂以控制RO系统尾部的沉淀。不溶于水的形式为三价铁。膜生产商建议RO给水中的全部铁含量低于0.05 ppm。如果全部的铁均为可溶的二价状态且pH值低于7.0,可以允许0.5 ppm含铁浓度(尽管此时建议使用分散剂)。空气与可溶二价铁的接触可将其氧化为不溶的三价铁。井水之中一般存在可溶的铁,当井水被置于容器或水泵密封不严时,即可使二价铁变为的不溶的三价铁。可溶铁可以用分散剂处理,或用铁过滤器、软水器、软化法加以去除。而不溶的三价铁氧化物或以胶体形式存在的氢氧化铁,将污染RO系统的前端。不溶铁的来源是暴露于空气中的井水、地表水、无衬里管路与容器的铁锈。不溶铁的去除可采用铁过滤器、石灰软化法、软化器(部分去除)、超滤器(部分去除)及在给水中加有聚电解质的多介质过滤器(部分去除)。在锰砂过滤器中使用高锰酸钾须十分注意,因该氧化剂可损伤任何聚酰胺膜。使用阳离子聚电解质同样需要注意,它能够永久污染带负电荷的聚酰胺膜。建议RO系统、预处理系统及RO的供水配水系统中的容器或管道使用耐腐蚀材料(如:FRP、PVC或不锈钢)。作为污染物的铁含量的增加,会造成给水压力及淡水TDS增加。有时铁还会造成生物污染问题,因为它会成为食铁还原菌的食品。食铁还原菌能够生成粘性的生物膜,造成RO给水通道的阻塞。
铝离子(Al)
由于铝的可溶性很差,在井水或地表水中不会有很高的浓度。在RO给水中的铝是以胶体形式而不是以离子形式出现,它是市政给水系统或现场处理时澄清池、石灰软化器产生的明矾残留物造成的。明矾(硫酸铝)是常用的絮凝剂,对地表水中带负电荷的胶体(淤泥与黏土)起吸附与沉淀作用。明矾溶入水中变成三价铝与硫酸根。铝离子的水合物与水发生反映形成大量的氢氧化铝水合物,进行聚合并开始吸引水中的负电荷胶体,并会发生铝质胶体在系统中的污堵。因此,在RO给水中0.1-1.0 ppm的铝已达到报警水平。由于铝是中性的,性质较为复杂,在低pH值条件下,铝以带正电荷的三价阳离子或氢氧化铝形式存在;在高pH值条件下,铝以带负电荷的阴离子复合物形式出现。铝合物最小溶解度的范围内,pH值为
5.5-7.5。
铵离子(NH4)
铵为单价阳离子,铵盐极易溶解不会造成RO系统的结垢问题。铵离子是溶于高pH值水中的氨气(NH3)形成的,高pH值水中氨的离解生成了铵离子与氢氧离子;低pH值水中氨为气态,象二氧化碳一样,不会被RO系统脱除。井水中一般不存在铵离子,泥土中细菌的作用已使铵转化为暂态的亚硝酸盐(NO2)进而氧化成常见的硝酸盐离子。铵离子以不超过1 ppm的低浓度存在于地表水中,是破坏有机氮化合物与生物活动的结果。施氨肥农田、畜牧场与发酵场所的排水可以造成地表水的铵污染。由于生物活动与大量有机氮的作用,铵离子在市政污水中可达20 ppm,另外一个铵污染源是氨气与氯气生成的氯氨杀虫剂。
碳酸氢根离子(HCO3)
碳酸氢根是单价阴离子。碳酸氢钙的溶解度很低,能够在RO系统的浓水出口侧形成沉淀。碳酸氢钙的溶解度测量单位,对苦咸水应该用LSI(朗格里尔饱和指数),对海水应该用史蒂夫戴维斯指数。温度升高与pH值增加均使碳酸氢钙的溶解度进一步下降。碳酸氢根是碱性物,pH值在4.4-8.2之间时它与二氧化碳相平衡,pH值在8.2-9.6之间时它于碳酸盐相平衡。
碳酸根离子(CO3)
碳酸根是二价阴离子,碳酸钙的溶解度很低,可在RO系统尾侧结垢。其溶解度对苦咸水用LSI(朗格里尔饱和指数),对海水用SDSI(史蒂夫戴维斯指数)表示。温度上升或pH值增高均使其溶解度下降。碳酸根是碱性成分,pH值在8.2-9.6之间时,其浓度与碳酸氢根平衡。pH值大于9.6时,不存在二氧化碳与碳酸氢根,全部碱性物均为碳酸根。
硝酸根离子(NO3)
硝酸根是单价负离子,硝酸盐具有高溶解度,不会造成RO系统结垢问题。硝酸根与氨气、铵均为氮基离子,它是自然界中氮循环中的一个环节。RO原水中的氮源自动植物分解、发酵、畜牧及施氮肥农田等排出的水。井水中不存在氨与铵,他们已经被土壤中的细菌转化为亚硝酸盐,进而氧化为更加常见的硝酸根离子。在水质分析中,通常将硝酸根含量表示为氮的ppm值,而不是RO系统所关注的硝酸根的ppm值。欲将前者转化为后者,需将氮的ppm值乘以4.43。美国EPA已公布了饮用水中硝酸根含量极限为:氮的4.43 ppm即硝酸根的44.3 ppm。当硝酸根占据了氧在血红蛋白中的位置时是十分有害的,含氧量的下降将导致Blue-Baby综合症,因此孕妇与婴儿受硝酸根的作用是更加危险的。
氯离子(Cl)
氯根为单价阴离子。氯盐的溶解度很高,在RO系统中不会造成结垢。在海水中氯的比重很大。在RO给水分析中氯根被用来自动平衡水中正离子浓度。从味觉方面考虑,美国EPA与WHO标准中指出,饮水中氯根高限为250 ppm。
氟离子(F)
氟为单价负离子,一般它在井水中的含量较低。为了防止牙病,在市政自来水中需加入氟离子并保持其残留量达2.5ppm,因此氟离子在RO给水中是常见离子。在饮用水中氟含量高于5 ppm即可造成牙斑与骨脆。
RO系统中氟的去除率决定于给水的pH值。pH值显碱性时,由于氟以盐的形式存在,用聚酰胺膜脱除氟可达99%以上;pH值显酸性时,由于氟以酸的形式存在,氟的脱除率可降至50%。
硼 (B)
硼一般存在于海水中,其含量可达5 ppm,内陆咸水湖中含量更低。硼不是污染源,但由于在某些使用环境中会造成不利影响,因此在电子工业中必须去除。硼的化学性质类似于硅,pH值高于10状态下,它以单价硼酸根阴离子形式存在,pH值低于10状态下,它以非离子化的硼酸B(OH)3形式存在,硼酸盐的去除率与pH值有关,pH值高时,取除率也高。
二氧化硅(SiO2)
硅在某种情况下是一个阴离子。它的化学性质很复杂,甚至是不可预测的。TOC(以碳计)表示有机物总量而未指明有机物的构成,同样,硅浓度仅表示了硅的总浓度(以碳计),但没有指明硅的各种构成的浓度。水中的硅总量中包括活性硅与惰性硅。活性硅是可溶硅,它被弱电离且未聚合成长链。活性硅是RO与离子交换工艺中希望的形式,也是Rodesign软件所使用的二氧化硅的形式。虽然活性二氧化硅有阴离子特性,但在水质分析中它未以阴离子方式计入阴阳离子平衡,却以盐的形式计入TDS。惰性硅是聚合硅,或胶体硅,就其性质而言与其说是个离解离子毋宁说是个溶解固体。胶体形式的硅可以被RO系统去除,但可能在RO前端造成胶体污染。胶体硅的直径可小到0.008微米,但只有大于或等于0.45微米的部分才能用SDI来测量。粘土、淤泥、沙石等微粒状的硅混合物一般有1微米或更大的直径,可用SDI值测量。以二氧化硅做基本粒子的聚合硅在自然界以水晶或玛瑙形式存在,它也是活性硅超饱和的结果。在使用硅分散剂条件下,活性硅的溶解度限值为200-300%。温度的升高、pH值在7.0以下或7.8以上均会使硅的溶解度上升,对硅聚合起催化作用的铁离子存在时,活性硅溶解度下降。在RO系统中,硅的脱除率与原水pH值密切相关,随pH值的增加,该脱除率也增加,这是因为活性硅更多的是以盐的形式存在,而不是酸的形式。
二氧化碳(CO2)
二氧化碳为气体,当溶于水时与水反应生成弱碳酸(H2CO3)。如纯水中二氧化碳处于饱和状态,其浓度约为1600 ppm,pH值约为4.0。自然界水体中二氧化碳的来源是基于pH值的碳酸氢根平衡。水体中的二氧化碳浓度间接的决定于pH值与碳酸氢根浓度的对应关系。二氧化碳与碳酸氢根离子在pH值的4.4-8.2区间保持平衡。pH值为4.4时碱性物均为二氧化碳,pH值为8.2时碱性物均为碳酸氢根。【Rodesign】程序运用碳酸氢根浓度与pH值计算水中二氧化碳浓度。由于二氧化碳为气体,RO膜对其不具有脱除或浓缩作用,其浓度在给水、淡水与浓水中相同。在给水中加酸将碳酸氢根化为二氧化碳,故而pH值下降。
硫化氢(H2S)
硫化氢呈气态,使给水中有臭蛋气味。其0.1 ppm浓度是异味的临界值,在3-5 ppm浓度时,具有强烈的异味。硫化氢易于被空气、氯及高锰酸钾等氧化剂氧化成硫。硫的作用类似于胶体污染,用传统的介质过滤器不能去除。在系统设计中,建议将硫化氢保留为气态,使其穿过RO系统进入淡水,再对淡水进行处理并去除。
mg/L
表示给定水体中离子或物质重量的方法之一是毫克/升(mg/L)。对稀溶液而言。毫克/升和ppm是等同的。例如,1000 mg/L(ppm)的氯化钠溶液意味着:一升该溶液蒸发之后,应生成1000 mg氯化钠(NaCl)固体。RO工程师们经常用mg/L单位计算TDS的数值。
Meq/L
表示给定水体中离子或物质的当量重量或浓度的方法之一是毫克当量/升(Meq/L),该值计算方法是用相应离子或物质的毫克/升(mg/L)数值除以其当量重量。在RO水质分析时meq/L是常用单位,特别用于判断正、负离子总毫克当量值是否平衡。
打兰/加仑
离子交换与锅炉给水处理常以打兰/加仑(以碳酸钙计)为量纲计量水的硬度。每打兰/加仑(以碳酸钙计)等于17.1 ppm(以碳酸钙计)。
ppb(1/1,000,000,000)
ppb是表示水中某种物质或离子浓度的单位,下列转换关系适用于比重为1的低含盐量的淡水。1 ppb 等于1微克每升(mg/L),1 ppm 等于1000 ppb。
ppm(1/1,000,000)
ppm是表示水中某种物质或离子浓度的单位,下列转换关系适用于比重为1的低含盐量的淡水。 1 ppm 等于1毫克每升(mg/L);1打兰每加仑等于17.1 ppm;1磅每1,000加仑等于120 ppm;百分之一的溶液等于10,000 ppm;1 ppm 等于1000 ppb。
ppm(以CaCO3计)
ppm(以碳酸钙计)是表示水中的物质或离子当量浓度的单位。以碳酸钙计的离子ppm浓度。在离子交换工艺中经常使用,用以计算阴阳树脂的离子载荷,水质分析时判断水中正负离子总量是否平衡。由于自然界中正负离子间的平衡是以其化合价与剩余电子计算,而不是以各自的重量计算,因此在水质分析时应采用当量来衡量正负离子的电中性水平。用碳酸钙做标准仅仅由于其分子量为100,其化学价为2,其克当量重为50。将以mg/L为单位的离子浓度值变为以碳酸钙计的ppm浓度值的方法如下:以某离子mg/L浓度值乘以碳酸钙离子克重与某离子克重值比。
例如,以碳酸钙计的100 ppm钠与以碳酸钙计的100 ppm氯是平衡的。因为每一个钠离子均对应着一个氯离子。但此时的钠为47 mg/L(钠的克当量重为23),氯为71 mg/L(氯的克当量重为35.5),且氯化钠溶液的TDS值为118 mg/L。
苦咸水
在一定意义上,苦咸水可定义为由于海水的入侵使其TDS值大量增加的低TDS水源。在RO范畴中,可将苦咸水定义为:含盐量TDE值处于中低水平(高达10,000-15,000 ppm),且可以用最大给水压力600psi的苦咸水RO膜进行处理的反渗透给水。
河水
由于下雨而落在地表的水,通过地表或者经由地下汇入河流。通过地表的水多含有悬浮物,而地下经由的水则含有较多的流经地层的溶解性无机盐类。在流经地表的雨水汇入河流时,悬浮物浓度会急剧增加,因此河水的特征就是河水中悬浮物的变化幅度大。而且河水的季节性的明显,比如水温变化,水生生物的繁殖,以及来自于生物的沉渣和来自于有机物的胶体物质的含有量等。另外流经森林地带和泥媒地带的河流中腐殖质和有机物含量也会很高。河流还会被城市废水处理水,工厂排放污水,或者含农药的灌溉用水污染。所以要求我们对水质进行足够的调查,把握其变化幅度,要对预处理装置或者运行条件做必要的考虑。
  
湖泊
河川水在湖泊或者水库中发生长时间的滞留后悬浮物因为沉降其含量会变少,但另一方面又容易受微生物的影响。湖泊或者水库水容易造成富营养化,致使比重较轻的藻类会过度繁殖,造成湖泊的沉淀凝集功能不良,有时可能会造成过滤池的堵塞。还会因为碳酸同化作用,消耗溶解在水里的二氧化碳,造成湖水的pH增高。
湖泊内部形成水的分层时,水的底层由于处于缺氧的状态会有利于厌氧细菌的生长,还有硫化氢的生成、包括引起铁、锰的再溶解等等。因此,在采用湖泊或者水库水作为原水的时候,必须深入研究对其的处理方式的同时,有必要的话,在取水上尽量考虑不用湖底变质的水。
地下水
地下水在地层的流速极为缓慢,由于自然的滤过作用,几乎不含有悬浮物,但受到流过的地层的影响十分明显。比如,流经石灰盐带的水中钙的浓度就非常高,通过火山地带的地下水中硅的浓度也会变高。通常地下水中由于氧气的不足,显还原性,可能水中含有还原状态的铁或锰,也可能因为地层的不同,含有硫化氢或者钡、锶的情况也会出现。
地下水的悬浮物较少,全年的水温变化也显得比较稳定,作为RO系统的原水来考虑,必须考虑在前处理中需要除去的硬度成分、硅以及含量较多的金属离子。
   
市政用水
RO系统使用自来水作为原水时,要确认自来水处理工艺,管道状况,注意余氯。
海水
标准海水中NaCl的含量在3.5%以上,还有镁、钙、钾、硫酸根、碳酸根、溴、硼和氟等10多种溶解性成份。由于入海口,降水、潮汐或者水温影响,海水中的盐份浓度有一定差异,悬浮物和有机物含量受到江河和人类活动等的影响,会有地域差异。因此海水淡化系统的取水点及取水方式至关重要,直接影响到原水的水质和预处理方式。
废水
近年来在越来越多的市政污水及工业污水的深度处理中开始采用反渗透工艺,用于反渗透处理的污水一般为工业冷循环排污水和达到杂用水回用标准的三级处理水,COD小于50mg/L,含油量、浊度经过进一步处理后必须达到RO进水要求。要特别注意原水中是否含有表面活性剂等回造成反渗透膜严重污染的有机物,以及与膜材料不相容的有机溶剂等。由于污水水质的复杂性和波动性,水质资料的收集和调查工作显得尤为重要。废水处理反渗透系统要求极为严格的预处理,采用非常保守的低通量设计,使用性能优异的低污染膜元件(比如LFC3-LD)。
4.2水质分析
1原水分析
一个水样表现了具体水源在特定时间的水质。所以通过一个水样并不能全面了解在整个运行时间内发生的、能够影响系统运作的趋势或变化。收集多个水样除了可以获得对一个水源特性的更好了解外,还能分析水质变化的原因。了解一个现有的或潜在的水源组成的正确分布轮廓是一个反渗透系统有效设计和运作的必需的要素。
取样
取样是整个水分析方案的组成部分。在样品的采集中要满足两个基本要求。首先,样品应该准确代表所要评价的水。这可能需要采集在24h或更长时间的整个期间内的混合样品。其次,样品必须有足够的量以保证完成所有应该分桥的项目。根据ASTM-D 4195—88关于反渗透应用的水分析标准指南中的分析要求,对大多数情况10升样品量应是足够的。
在取样之前,应仔细考虑以下几个问题:
◆ 由水样必须获得什么信息?
◆ 将要采用哪些分析方法?
◆ 取样点能足以保证取得代表性的样品吗?
◆ 哪些分析最好在现场完成?
◆ 在样品转移至实验室过程中会发生什么贻误,需要什么样的保护方法?
◆ 样品体积需要多少?
◆ 什么样的容器对完成分析最适宜?
通过对这些问题的仔细考虑,可以设计出一个有效的取样方案。对所要求资料的全面了解将使人们能获得恰如其分的资料,而不致做过多的分析项目,或是遗漏有价值的数据。通过对要完成的特定分析步骤的了解,便能够收取恰当体积的样品,并能对水样采取适当的及有效的保护。通过对方案全貌的了解,样品能协调地转移至一个合格的实验室。
合适的样品收集容器是保证准确的水分析的关键。必须考虑由于容器引起的污染。常使用塑料或玻璃样品容器。样品容器在使用前必须清洗,以免污染样品。玻璃瓶用硫酸和重铬酸盐溶液清洗,这些溶液对避免瓶子的有机物污染特别有效。塑料容器可用实验室洗涤剂擦洗,或用浓盐酸漂洗.然后用去离子水彻底清洗。用于取样的容器需要进行消毒处理。
系统内取样点的选样是一重要的问题。新的系统应具有位于可容易取得有代表件样品位旨的诸多取样孔,并且这些取样孔应避免位于系统内的死区。若不考虑这些,这些取样点常可能成为污染源。最好的取样点是位于促进水均匀混合的位置。在样品收集之前,应彻底冲洗取样孔。除非容器中的保护剂必须随样品保留,否则样品容器也应该用被取样的水漂洗数次。样品收集历,需要记录的资料包括如下:
a) 样品名称;
b) 取样点;
c) 收集时间及日期;
d) 保护(若有任何保护措施);
e) 收集时的水温;
f) 现场所做的任何分析,如溶解氧或二氧化碳的浓度。
 

相关文章

提交时间: